PROF KARIN JANDELEIT-DAHM

DIABETES & KIDNEY DISEASE

The Diabetes & Kidney disease laboratory explores the mechanisms by which high glucose and the diabetic milieu cause persisting and progressive changes within the kidney and the vasculature leading to kidney failure, heart attacks, strokes and amputations in Australia. The work spans basic biochemistry to clinical evaluation of new therapies targeting the prevention of diabetes associated complications.

Research Brief

Diabetic kidney disease is the major cause of renal failure in the Western World requiring dialysis or transplantation and contributing to increased cardiovascular morbidity and mortality in diabetes. Our laboratory explores mechanisms and potential targets to prevent or better treat diabetes associated kidney and cardiovascular injury. The major focus includes studies on haemodynamic and metabolic pathways such as the renin-angiotensin system and other vasoactive hormone pathways such as the endothelin system, advanced glycation end products and the interaction with their receptors including RAGE, and oxidative stress via activation of NADPH oxidases (Nox). We perform an integrated approach spanning from cell culture experiments to animal models of diabetes associated kidney disease and atherosclerosis. The laboratory has a strong track record in translating basic research findings to the clinic.

Methodologies

- Cell culture studies using mouse and human mesangial and tubular cells as well as podocytes. Furthermore we employ mouse and human endothelial and vascular smooth muscle cells
- Assessment of renal injury: renal functional and structural injury
- Assessment of vascular injury including endothelial dysfunction and vascular adhesion
- Assessment of plaque area, morphology, composition and stability

Selected Publications

CONTACT

Karin Jandeleit-Dahm
+61 (3) 8532 1739
karin.jandeleit-dahm@bakeridi.edu.au
Human podocytes NOX 4 Expression

- Normal Glucose
- High Glucose

Genetic deletion of Nox1 but not Nox4 reduces plaque area in diabetic mice S Gray et al, Circulation, 2013

RAGE deletion attenuates glomerular collagen accumulation in diabetes

- Control
- Diabetic
- Rage KO control
- Rage KO Diabetic