Skip to primary navigation Skip to main content
0 item $0.00

Student research project

Supervisor(s): Associate Professor Judy de Haan, Professor Peter Kingshott, Professor Rebecca Ritchie and Dr Huseyin Sumer

Research focus

The project will design and manufacture surface treatments that can be applied to implantable grade stent materials (typically stainless steel).

Project summary

The main aim is to enhance growth of endothelial cells (ECs) on the stent surface and simultaneously reduce inflammation and uncontrolled vascular smooth muscle cell (VSMC) proliferation into the stent. The surface coatings will consist of firstly generating reactive functional groups on the stent material by the process of plasma polymerisation followed by covalent grafting of functional hydrogels. The hydrogels will consist of alginates and synthetic polymers such as polythylene glycol that have an additional property of reducing the adsorption of plasma proteins like fibrinogen that cause inflammation and thrombosis.

The first aim of the coating is to provide a stable interface that can withstand the high flow conditions in arteries. The second aim is to use the chemical groups in the hydrogel layer to immobilised cell-adhesive peptide sequences (e.g. cyclic RGD) that will enhance the endothelialisation of the stent surface. A third aim is to co-immobilise peptides or enzymes to the hydrogel layer that have the ability to provide a therapeutic surface against oxidative reactions that lead to inflammation. Examples include mimetics of the antioxidant enzyme glutathione peroxidase-1 (GPXI).

Finally, it is envisaged that an additional element can be incorporated into the surface coating (e.g. within the plasma layer) that can slowly release nitric oxide (NO) so that the surface mimics the function of ECs. These surfaces will be studied in in vitro assays involving ECs, VSMCs and macrophages. Promising technologies have the potential to be applied directly to stents and used in in vivo preclinical models.

The research question is: can a surface coating that mimics that function of endothelial cells be generated on a stent surface to minimise the incident of restenosis and improve the clinical outcomes of patients who have undergone balloon angioplasty.

Enquire about this project

Browse all postgraduate research opportunities

Support us

With the rising number of Australians affected by diabetes, heart disease and stroke, the need for research is more critical than ever.

Find out more