Skip to primary navigation Skip to main content
0 item $0.00

Student research project

Supervisor(s): David Ascher

Project summary

Drug resistance is a persistent and worldwide problem that has emerged as a grave and significant threat to public health, reducing the effectiveness of therapies that treat bacteria, parasites, viruses, fungi and cancer.

Within protein coding regions resistance can be confirmed through a number of mechanisms including modulation of the drug compound’s target or, as many infectious disease drugs are delivered as pro-drugs, modulation of the proteins that convert the pro-drug to its active form. Mutations resulting in changing the profile of compounds that can be transported by efflux pumps is another means by which resistance can be introduced.

The aim of this project is to develop computational tools for automatically analysing the molecular consequences of mutations linked with therapeutic resistance and to use this wide-ranging analysis to build a predictive model to identify future mutations that could lead to therapeutic failure. By generating a few broad rules, we have been able to identify resistance mutations in whole genome Tuberculosis sequences, chemotherapeutic and HIV inhibitor resistance mutations, and antibody escape mutations in HIV and influenza. Using this to predict and anticipate how and when resistance is likely to arise will allow implementation of better drug use management to prolong drug efficacy. This is being developed as part of a platform to rapidly identify drug resistance in the clinic, guiding public health policy and patient treatment.

If we can identify likely resistance mutations before they arise, it could be used to guide drug and biotherapeutic development in order to avoid sites identified as likely resistance hot-spots. This could reduce and/or delay the incidence of resistance. The ultimate goal is to integrate this analysis along with our pharmacokinetic and toxicity predictions into an integrated system where all the parameters can be explored and optimised in real time to aid the development of resistance resistant therapies.

This project is suitable for a Masters, Honours or PhD student.

Enquire about this project

Browse all postgraduate research opportunities

Student research opportunities

Beginning your research career with one of Australia's largest medical research institutes provides unique opportunities for Masters, Honours and PhD students.

Find out more